Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903033

RESUMO

This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices.

2.
Anal Bioanal Chem ; 413(20): 5215-5226, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34259876

RESUMO

An electroanalytical sensor was constructed constituted on a carbon paste electrode (CPE) with a ZIF-67 modifier and devoted to the quantification of Tl(I). Several characterization tests including XRD, BET, FT-IR, SEM/EDS/mapping, TEM, impedance spectroscopy (EIS), and cyclic voltammetry (CV) were performed on the synthesized ZIF-67 nanocrystals and CPE matrix. Central composite design (CCD) was used to assess the impact of variables affecting the sensor response, including the weight percent of ZIF-67 (14%), the pH of the thallium accumulation solution (6.4), and accumulation time (315 s) as well as the accumulation potential (-1.2 V). The direct linear relationship between the sensor response and the concentration of Tl(I) is in the interval of 1.0×10-10 to 5.0×10-7 M (coefficient of determination = 0.9994). The detection limit is approximately 1.0 × 10-11 M. The right selection of the MOF makes this sensor highly resistant to the interference of other ions. High selectivity against common interferences in the measurement of thallium (such as Pb(II) and Cd(II)) is an important feature of this sensor. To confirm the performance of the prepared sensor, the amount of thallium in the real sample was determined.

3.
RSC Adv ; 11(49): 30674-30688, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35479869

RESUMO

Sodium alginate (SA) has proven its high potential in tissue engineering and regenerative medicine. One of the main weaknesses of this polysaccharide is its low spinnability. Nanofiber-based scaffolds are of interest to scientists for biomedical engineering. The main aim of this study was to improve the spinnability of SA in combination with polyvinyl alcohol (PVA). The main parameters in the electrospinning of the optimized SA:PVA ratio, including voltage, flow rate, and working space were also optimized. To achieve this, response surface methodology under central composite design was employed to design the experiments scientifically. The final nanofiber scaffolds were studied using scanning electron microscopy, Fourier transform infrared spectroscopy for degradability, swelling, tensile strength, porosity, nanofiber diameter, contact angle, and cytotoxicity. Based on the results, the best ratio for SA : PVA was 1 : 6.5 that was spinnable in various values for the process parameters. The fabricated scaffolds under these conditions revealed good physical, chemical, mechanical, and biological features. L929 cell lines revealed high viability during 48 h culture. The results revealed that uniform and homogeneous nanofibers with regular size distribution (166 nm) were obtained at 30 kV, 0.55 µL h-1, and 12.50 cm. To sum up, the fabricated scaffolds with the optimized ratio under the reported conditions indicate at good biologically compatible candidates for skin tissue engineering.

4.
Anal Methods ; 12(23): 3045-3055, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32930165

RESUMO

ZIF-8 was synthesized and carbon paste electrodes (CPEs) modified with this metal-organic framework were utilized for quantitation of silver(i) by the differential pulse anodic stripping voltammetry (DPASV) technique.Prepared ZIF-8 and the matrix of the electrodes were distinguished by impedance spectroscopy (EIS), XRD, FT-IR spectroscopy, cyclic voltammetry (CV), TEM and SEM/EDX methods. To obtain the strongest stripping peak currents, several significant variables were optimized with response surface methodology (RSM), including the ligand amount (near 11% w/w), applied potential for preconcentration (approximately -1.36 V), pH of the preconcentration solution (about 8.5) and preconcentration time (about 275 s). A calibration curve was acquired in the limits from 1.0 × 10-10 to 5.0 × 10-7 M with the Pearson correlation coefficient R = 0.9993. The limiting detectable concentration (LDC) was determined to be 1.0 × 10-11 M. The developed sensor has high selectivity for mercury(ii). The excellent pH, potential and especially size-exclusion based selectivity of the prepared sensor are unique characteristics that are very important in the determination of silver ions. The developed method was effectively employed for the quantitation of silver(i) ions in environmental and industrial samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...